

Lakeshore Technical College

10806179 Advanced Anatomy and Physiology

Course Outcome Summary

Course Information

Alternate Title Adv Anatomy & Physiology

- **Description** Advanced Anatomy and Physiology is the second semester in a two-semester sequence in which normal human anatomy and physiology are studied using a body systems approach with emphasis on the interrelationships between form and function at the gross and microscopic levels of organization. Instructional delivery within a classroom and laboratory setting. Experimentation within a science lab will include analysis of cellular metabolism, the individual components of body systems such as the nervous, neuro-muscular, cardiovascular, and urinary. Continued examination of homeostatic mechanisms and their relationship to fluid, electrolyte, acid-base balance and blood. Integration of genetics to human reproduction and development are also included in this course.
- Total Credits 4

Total Hours 90

Pre/Corequisites

Prerequisite General Anatomy and Physiology with a C or better

Course Competencies

1. Integrate genetics, development and human reproductive physiology

Assessment Strategies

- 1.1. through an analysis (Format may be written, graphic or oral)
- 1.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course

Criteria

Performance will be successful when:

- 1.1. analysis compares mitosis with meiosis
- 1.2. analysis distinguishes between spermatogenesis and oogenesis
- 1.3. analysis identifies chromosomal abnormalities
- 1.4. analysis describes the events of fertilization/fetal development
- 1.5. analysis recognizes fetal circulation
- 1.6. analysis describes the hormonal changes during and after pregnancy
- 1.7. analysis recognizes patterns of human inheritance

Learning Objectives

1.a. Compare mitosis with meiosis

- 1.b. Distinguish between spermatogenesis and oogenesis
- 1.c. Identify chromosomal abnormalities
- 1.d. Describe the events of fertilization/fetal development
- 1.e. Recognize fetal circulation
- 1.f. Describe the hormonal changes during and after pregnancy
- 1.g. Recognize patterns of human inheritance

2. Illustrate the role of DNA in controlling cell function and genetics

Assessment Strategies

- 2.1. through an illustration (Format may be written, graphic or oral)
- 2.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course

Criteria

Performance will be successful when:

- 2.1. illustration describes DNA replication
- 2.2. illustration shows relationship to enzyme production
- 2.3. illustration describes effect of mutations on cell function
- 2.4. illustration contrasts DNA and RNA structures and functions
- 2.5. illustration distinguishes among the three types of RNA

Learning Objectives

- 2.a. Describe DNA replication
- 2.b. Show relationship to enzyme
- 2.c. Describe effect of mutations on cell function
- 2.d. Contrast DNA and RNA structures and functions
- 2.e. Distinguish among the three types of RNA

3. Analyze urinary anatomy and physiology

Assessment Strategies

- 3.1. through an oral or written analysis
- 3.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 3.3. in the lab

Criteria

Performance will be successful when:

- 3.1. analysis correlates nephron structure to urine formation
- 3.2. analysis describes urine formation
- 3.3. analysis examines the role of hormonal control in kidney function
- 3.4. analysis explains the role of the juxtaglomerular apparatus
- 3.5. analysis explains the role of the kidney's vascular system in urine formation
- 3.6. analysis explains the normal and abnormal constituents of urine and their significance
- 3.7. you use college-wide laboratory safety, practices and procedure rules

Learning Objectives

- 3.a. Correlate nephron structure to urine formation
- 3.b. Describe urine formation
- 3.c. Examine the role of hormonal control in kidney function
- 3.d. Explain the role of the juxtaglomerular apparatus
- 3.e. Explain the role of the kidney's vascular system in urine formation
- 3.f. Explain the normal and abnormal constituents of urine and their significance

4. Correlate blood components and composition to homeostatic mechanisms

Assessment Strategies

- 4.1. through a written or oral analysis
- 4.2. given a case study
- 4.3. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 4.4. in the lab

Criteria

Performance will be successful when:

- 4.1. analysis relates hematology lab reports to human health
- 4.2. analysis identifies the steps of hemostasis
- 4.3. analysis identifies the major lipid constituents in blood
- 4.4. analysis discusses the blood's mechanism of transport
- 4.5. analysis correlates ABO/RH compatibility
- 4.6. you use college-wide laboratory safety, practices and procedure rules

Learning Objectives

- 4.a. Relate hematology lab reports to human health
- 4.b. Identify the steps of hemostasis
- 4.c. Identify the major lipid constituents in blood
- 4.d. Discuss the blood's mechanism of transport
- 4.e. Correlate ABO/RH compatibility

5. Correlate cardiovascular physiology to human health

Assessment Strategies

- 5.1. by interpreting case studies
- 5.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 5.3. through lab and clinical activities
- 5.4. in the lab
- 5.5. in the clinical setting

Criteria

Performance will be successful when:

- 5.1. you examine the conductive system of the heart
- 5.2. you examine the coronary circulation system
- 5.3. you examine blood flow dynamics
- 5.4. you examine factors affecting blood pressure
- 5.5. you relate extrinsic and intrinsic factors that influence cardiac function
- 5.6. you correlate the cardiac cycle with EKG and blood flow dynamics
- 5.7. you use college-wide laboratory safety, practices and procedure rules

Learning Objectives

- 5.a. Examine the conductive system of the heart
- 5.b. Examine the coronary circulation system
- 5.c. Examine blood flow dynamics
- 5.d. Examine factors affecting blood pressure
- 5.e. Relate extrinsic and intrinsic factors that influence cardiac function
- 5.f. Correlate the cardiac cycle with EKG and blood flow dynamics

6. Correlate fluid, electrolyte and acid-base balance to the homeostatic mechanisms responsible for their control

Assessment Strategies

- 6.1. through a written or oral analysis
- 6.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course

Criteria

Performance will be successful when:

- 6.1. analysis identifies fluid compartments and the water and solute movement between them
- 6.2. analysis diagrams the mechanisms by which the water content of the body fluid is regulated
- 6.3. analysis compares the composition of intracellular and extracellular fluids
- 6.4. analysis describes mechanisms for regulating pH
- 6.5. analysis describes respiratory acidosis, alkalosis, and compensatory mechanisms

Learning Objectives

- 6.a. Identify fluid compartments and the water and solute movement between them
- 6.b. Diagram the mechanisms by which the water content of the body fluid is regulated
- 6.c. Compare the composition of intracellular and extracellular fluids
- 6.d. Describe mechanisms for regulating pH
- 6.e. Describe respiratory acidosis, alkalosis, and compensatory mechanisms

7. Explain the mechanisms maintaining adequate tissue profusion and oxygenation

Assessment Strategies

- 7.1. through an analysis (Format may be written, oral or graphic)
- 7.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 7.3. in the lab

Criteria

Performance will be successful when:

- 7.1. analysis explains the mechanisms that influence hemodynamics
- 7.2. analysis includes mechanisms responsible for controlled blood flow through tissues
- 7.3. analysis includes compensatory mechanisms operatory during shock
- 7.4. analysis explains how alterations in blood, pc02, pH, and p02 influence ventilation
- 7.5. analysis includes the exchange of oxygen and carbon dioxide in the tissues and lungs
- 7.6. analysis explains the hormonal mechanism influencing hemodynamics
- 7.7. analysis explains the neurological mechanisms influencing hemodynamics
- 7.8. analysis explains the mechanisms of gas transport
- 7.9. you use college-wide laboratory safety, practices and procedure rules

Learning Objectives

- 7.a. Explain the mechanisms that influence hemodynamics
- 7.b. Examine the mechanisms responsible for controlled blood flow through tissues
- 7.c. Describe the compensatory mechanisms operatory during shock
- 7.d. Explain how alterations in blood, pc02, pH, and p02 influence ventilation
- 7.e. Explain the exchange of oxygen and carbon dioxide in the tissues and lungs
- 7.f. Explain the hormonal mechanism influencing hemodynamics
- 7.g. Recognize the neurological mechanisms influencing hemodynamics
- 7.h. Explain the mechanisms of gas transport

8. Identify the processes of cellular metabolism

Assessment Strategies

- 8.1. through a diagram
- 8.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 8.3. in the lab

Criteria

Performance will be successful when:

- 8.1. diagram describes the process of protein synthesis
br />
- 8.2. diagram compares the processes of aerobic and anaerobic respiration
- 8.3. diagram distinguishes between anabolism and catabolism
- 8.4. diagram compares the mechanism of carbohydrate, lipid and protein metabolism
- 8.5. diagram correlates appropriate cellular organelles with their cellular metabolism role
- 8.6. diagram includes description membrane transports and receptor sites
- 8.7. you use college-wide laboratory safety, practice and procedure rules

Learning Objectives

- 8.a. Describe the process of protein synthesis.

- 8.b. Compare the processes of aerobic and anaerobic respiration.
- 8.c. Distinguish between anabolism and catabolism.
- 8.d. Compare the mechanism of carbohydrate, lipid and protein metabolism.
- 8.e. Correlate appropriate cellular organelles with their cellular metabolism role.
- 8.f. Diagram includes description membrane transports and receptor sites (????)

9. Analyze how the individual components of the nervous system work as an integrated whole

Assessment Strategies

- 9.1. in the lab
- 9.2. through case study analysis
- 9.3. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course

Criteria

Performance will be successful when:

- 9.1. analysis examines sensory function
- 9.2. analysis examines motor neural pathways
- 9.3. analysis describes the role of the autonomic nervous system
- 9.4. analysis describes the generation of neuron action potentials
- 9.5. analysis describe neuro-physiology including potentials, impulse conduction and synaptic transmission
- 9.6. analysis identifies the role of neurotransmitters
- 9.7. analysis correlates cranial nerves to their respective physiological functions
- 9.8. analysis relates higher order brain functions to brain anatomy
- 9.9. analysis relates various types of pain to homeostatic mechanism
- 9.10. you use college-wide laboratory safety, practice and procedures rules

Learning Objectives

- 9.a. Examine sensory function
- 9.b. Examine motor neural pathways
- 9.c. Describe the role of the autonomic nervous system
- 9.d. Describe the generation of neuron action potentials
- 9.e. Describe neuro-physiology including potentials, impulse conduction and synaptic transmission
- 9.f. Identify the role of neurotransmitters
- 9.g. Correlate cranial nerves to their respective physiological functions
- 9.h. Relate higher order brain functions to brain anatomy
- 9.i. Relate various types of pain to homeostatic mechanism

10. Correlate neuro-muscular physiology to normal body function

Assessment Strategies

- 10.1. through a diagram
- 10.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 10.3. in the lab

Criteria

Performance will be successful when:

- 10.1. diagram contrasts neuro-excitory and -inhibitory neurotransmittors
- 10.2. analysis examines sensory function
- 10.3. diagram correlates neurotransmitters with receptor sites
- 10.4. diagram relates synaptic activity to neural control
- 10.5. diagram identifies the microscopic anatomy of the muscle fiber
- 10.6. diagram identifies the physiology of muscle cell contraction
- 10.7. diagram explains the physiology involved in myoneural junctions
- 10.8. diagram explains energy production, storage and consumption in the muscle cell
- 10.9. you use college-wide laboratory safety, practice, and procedure rule

Learning Objectives

- 10.a. Examine sensory function
- 10.b. Contrasts neuro-excitory and -inhibitory neurotransmittors
- 10.c. Examine sensory function
- 10.d. Correlate neurotransmitters with receptor sites
- 10.e. Relate synaptic activity to neural control
- 10.f. Identify the microscopic anatomy of the muscle fiber
- 10.g. Identify the physiology of muscle cell contraction
- 10.h. Explain the physiology involved in myoneural junctions

10.i. Explain energy production, storage and consumption in the muscle cell

11. Correlate the components of the immune system to their functions

Assessment Strategies

- 11.1. through an analysis (Format may be written, graphic or oral)
- 11.2. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 11.3. in the lab

Criteria

Performance will be successful when:

- 11.1. analysis distinguishes among active and passive immunity
- 11.2. analysis describes the components of the immune system
- 11.3. analysis describes nonspecific immunity
- 11.4. analysis describes specific immunity
- 11.5. analysis describes cellular immunity
- 11.6. analysis describes humoral immunity
- 11.7. analysis describes immune disorders
- 11.8. you use college-wide laboratory safety, practice and procedure rules

Learning Objectives

- 11.a. Distinguish among active and passive immunity
- 11.b. Describe the components of the immune system
- 11.c. Describe nonspecific immunity
- 11.d. Describe specific immunity
- 11.e. Describe cellular immunity
- 11.f. Describe humoral immunity
- 11.g. Describe immune disorders

12. Distinguish among the processes of digestion, absorption, and assimilation

Assessment Strategies

- 12.1. through a written analysis
- 12.2. given a case study
- 12.3. by accurately answering questions about the concepts that support this competency in one or more written exams to be scheduled by your instructor at various points throughout the course
- 12.4. in the lab

Criteria

Performance will be successful when:

- 12.1. analysis examines absorption of nutrients
- 12.2. analysis examines transport of nutrients
- 12.3. analysis examines storage of nutrients
- 12.4. analysis relates enzymes to digestion
- 12.5. analysis relates hormones to digestion
- 12.6. analysis examines the role of the liver, gall bladder and pancreas in digestive and related metabolic functions
- 12.7. you use college-wide laboratory safety, practices and procedure rules

Learning Objectives

- 12.a. Examine the absorption of nutrients
- 12.b. Describe the transport of nutrients
- 12.c. Examine the storage of nutrients
- 12.d. Relate enzymes to digestion
- 12.e. Relate hormones to digestion
- 12.f. Examine the role of the liver, gall bladder and pancreas in digestive and related metabolic functions

13. Use appropriate scientific equipment, methods, and safety precautions

Assessment Strategies

13.1. in the laboratory

Criteria

Performance will be successful when:

- 13.1. you identify hazards and safety equipment in the lab
- 13.2. you wear personal protective equipment
- 13.3. you use appropriate pipetting devices
- 13.4. you never eat or drink in the laboratory
- 13.5. you routinely wash hands
- 13.6. you disinfects lab surfaces and work areas before and after use
- 13.7. you use approved techniques for cleaning up spills
- 13.8. you report or correct unsafe conditions observed in the classroom
- 13.9. you report or correct unsafe conditions observed in the lab
- 13.10. you use universal precautions with blood and other body fluids
- 13.11. you follow the requirements of the O.S.H.A. Bloodborne Pathogen Standard
- 13.12. you locate appropriate safety equipment
- 13.13. you properly dispose of waste
- 13.14. you report all injuries to instructor
- 13.15. you acknowledges or use proper steps for emergency steps
- 13.16. you follow good laboratory practice expectations of the college